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As we know, the solution of the equations of motion of a heavy rigid body about a fled 
point in the Hess’ case 

er 7 A (B - C) + es ji7?) = 0, es = 0 

(A, 3, C are the principal mornants of inertia and cl, 4, es are the c#r&uid~ of the! 
center of graviry of the body) is not redacMe to quadratures ; it is reduced to the solution 
of the Ricwti differential equation . Thh complicates ~~~g~~~ of the bang 
motion considerably. 

A general qualitative pattern of motim of a body was first g&en fait the Hess* Case 
by N. E. Zhukovskit [rl and followed in more detail by Kovalev [2,33 who empeed 
the m&od of moving hodojpph ( l ) . 

However both tI#bse geometrical int8rptetatians are fairly ComplicatBd, and g&e rise 
to severe difficulties when it comes to determining the motion of a specific rfgld body 
under concrete initial conditions. 

In the present paper we study the Hess’ case of pie motion of a dgid kwfy u@da the 
assumption that at the initial bstant a high angular vebcity O,J about SOI’M axis, is fm- 
parted to the body. We obtain explicit relations owlnecting the Euler angles with time, 
and these en&e us to analyze in detail the mot&m of the Hess gy~osoope witbut much 
difficulty. 

1. We construct the equations of motion of a rigid body in the asociat@d rect&ngulU 

coordiDate system OZ~Z whose Oz-axis passes through the center of gxatiry of the body, 
while the Oy and OZ axes are chorukn in such a manner (this Is always pss%le in the 
Hess cape [4]) that the expruaion for the kinetic ermrgy of the body beCamdS 

2T = u# + 0 (PO + z*) - 26p 
61 = A, %,&a) -It a=A;,& = A, (AuAm) -I 

Here 3, y, z are the projections of the kinetic moment of the body on the Ozyz axes. 
and AXi, AI,, A,#, Am are the components of the corresponding inertia temm for which 
the relation AIS% = AXE (Aal - A,) holds. 

We also note the following expressions for the prcrfeCtionS ol, % WS of the Angus* 
velociry : ai.= - by, 0, = ay, WJ - uz 

l ) Sea also A, M. Kodev*s “GeometdWl ~gad~ of ukrtain solutfoad of the pbiern 
of motion of a bady with a fixed point”,Candidaoc?*s dbsertatiun, DoIlbuLllt State Univ., 
1969. 
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In the Hess’ case the fourth integral is x = 0 in the Ozyz system while the equations 

themselves, their first three integrals, and the projections of the angular velocity under 

the condition b > 0 in the dimensionless variables 

y = V/rib Ylr z = I/r/bq, t=tl/ I/rb, oi=a diTof* 

r = Mg 1/c? + e?.? i = I, 2,s 0-v 

assume the form @] 

U.2) 

drl 
x = + (ZITS - YfrS), 

drs 
z = - YlT8 - + Zl-rl, 

dv 2 
z-!/l rs+c 71 (1.3) 

Y? + %* - ry, = & YIY, + Z,Y, = k,, Y? + vs2 + YE? = 1 (1.4) 
01 * = (-c / 2) y,, o** = y1, r0** - z1 (1.5) 

Here c = 2b / a; vl, y,, ys are the direction cosines of the vertical, and h and k, are 

dimensionless arbitrary constants. 
using the polar coordinates P and a 

J/1 = p co9 a, zI= psina 

to rewrite the energy and surfa& integrals in the form 

p* = c (VI + h), p (ys cos a + p sin a) = k, 

we obtain (applying (1.2) and (1.3)) the following equations for rl and o : 

w = tg l/s a 

(1.6) 

(1.7) 

(1.3) 

drl 

2&i 
-- 

- ~3 vc (h + n) + kl [c (h + r)l-’ (i + w*) 

Here and below we shall denote any function F.(t) by F, = F (0). 

We assume that at the. initial instant the axis Oz lies in the horizontal plane, the oz 
axis is inclined to the vertical at an angle 6, (0 < 80 < l/sz~) and that a high angular 
velocity o. about this axis is imparted to the body. Then the initial conditions are 

po = 0, Yao = 
l/lo= 0, 

sin 8,, yso = cos tIo (1.9) 
z10 = @o*, po = coo+, a = n/2 

and the relations (I. 7) yield 
oo*2 = ch, kl = oo* cos 8, (1.10) 

Passing to the new variables u and T and introducing a small parameter ~1 

we obtain 
Y = ha, T = tl dhlc, p = h-l 

(1.12) 

(1.11) 

du, 
2dt = c (i.- wz) 1/qr + p (i + w*) co9 eo (i + q-1 (1.13) 

2. To solve the equation (1.12) we find the roots 153 olr a,, us of the cubic equation 
I(o) = 0 which are 

u1 = p sin B. + Vsp* cosW, + pa (...I, 0s == -P sin 8, + Vsp* COST eO + p* (...I 
o, = - i - p* ~0~2 8, + p (..I 

(2.1) 

and performing the substitution 
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we obtain 

U-U,- (a, - $1 %a 

Eo = f, --+&+.+gg 

fri _ F7; _ k”g,j = - $'--axdr k2 93 ;s = 2psin 80 + p (...,I (2.3) 

Inverting the corresponding elliptic integral we obtain 

% = sn (v(O) - V_sz) (%* = s* 7’0)) 

as a function periodic in +r of the period Tr 

T, = 4K (a, - us)-“* = 2nTs IT, = 1 - QP sins ea + ~3 (...)I 12.4) 

where R is a complete elliptic integrat of the first kind. 
Introducing a new variable v* in place of t 

z = T,z* (2.5) 
we find that the quantity 

E = sn (P) - 2K n-V) (2.6) 
is a Pmperiodic function of T*. 

Expanding % by means of the formula 

Bnic= sin u1 [1 + ‘Is k* (i + COB ZQ)] + k’ f...), ul = ‘It nulF 

together with the expressbns fw ka and toquoted above and bserting the remit into the 
power series in p given in (2.15). we obtain 

o = p sin e. sin 222 + V,ps (co9 1 eO - V1 SW 8, - co8 2e0 co9 2r* - 
- I/% sin* 80 co9 42*) + p3 (...) (2.7) 

We note that o (.r*) is a n-periodic function off*. 
using the relations (2.5) and (2.7) we can rewrite (1.13) to obtain 

dw 
2-=e((1 d?* -ut~+~[1frcff-_)8in90sin2~+(1+uiJ)cos80]+ 

+fi’ 1ti - ws) (.‘.) -1’ftfi + tbt4)ein 2&l&l 27’1 + s* (**.) P.3) 

the right-hand side of which is a at-periodic function of r*. This equation has a unique 
n-periodic solution W which can be written in the form of a series 

w= w* + P’wI-i- p’ws + ..* 

with periodic coefficients given by 

dur+ 
2- *c(l-u*‘L> 

dr” 
(2.9) 

dWj 
~ ~ c Cwj + Fj (‘5*, w*, Wl, .‘.‘t zu)-i) (j-i, S. . ..) (2.10) 

where Fj is a n-periodic function of v*. 
In fact, UP = I is the only periodic solution of (2.9) and each ef the Eqs. (2.10) 

has a&o a unique periodic soh&cn @iI by virtue of the fact that c is reaL 
Thus, we obtain the following expression for W 

w=i+p J+k +p [*+ - &$j$$- (c sin 2X* - 2 60s ZZ*)] + pa L.1 (2+11) 

and writing for it a variational equation, we confirm that for suffiCic?ntly Small P the 
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periodic solution (2.11) is asymptotically stable. As for the required particular solution 

(Q = i) of (2.8)(which, generally speaking, can be found using the Poincare theorem 
[S]) , we find that by virtue of the fact that 

\w-WI-Pexp(-cv*), ?*@p-“rt 

it converges very rapidly to W. For this reason we shall use the solution (2.11) instead 
of the solution of (2. s). 

Formulas (1.8) and (2.11) yield 

ain a = 1 - ‘Js p2CSa COS' 0, 

cos a = - pc -1 CO8 e. + s/,pg (~2 + 4)-r sin 2e0 (c sin 27* - 2 cos 2r*) 

which, on insertion into (1.6) and using (1.7). (1.11) and (2.7), give 

zl= vz fi + l/s p Sin 80 Sin 2r* + r/s p2 [ 2 GOS 260 (i - 00s 2?*) + (2.12) 
+sinz6~sin22~*]+~*(...)) 

Formulas (1.2), (1.11). (2.20) and (2.25) yield 

yr = sin e0 sin 29 + l/s p tcoss6, - l/s sins (!I0 - cos 200 cos 22* - 
- ‘/* sin’ 8, CO8 4?*] + p* (...) 

Ys = sin Ba co5 22* - p (c-l co@ 0, - l/s co9 26, sin 239 + ps (...f (2.13) 
Ys =G05es+pG05e,fi - sin 0, sin 279 + ps (*.) 

3. .We shall analyze tbe motions of the Hess’ gyroscope using the Euler angles 6, IJI,$ 

d9 
009 e,= T8, dt = olr1+ otrs drp d$ * _ rS’- 9 dt=OB --GDOS8 (3-f) 

The first formula of (2.14). the last one of (2.13) as well as (1.1) and (1.11) yield 

e=e,- 2co& (1 - sin 8, sin o,t) + wi4( .4 (& = UC-T Gtg Ba) (3.2) 

Inserting (1. l), (1.5), (2.12) and (2.13) into the second relation of (3.1) and integra- 
ting, we obtain the following expression for the angle of precession 

\p=*po- o;2& (25in o,t + e cos oat) + 6&*&t + 00’ (...) (3.3) 
As = h* set 0, [(c2 + 4) coss6, - 2~~83 

Formulas (1.1). (1.5), (1. ll), (2.12), (2.13). (3.1) and (3.3) yield an expression for 
the angle of self-rotation in the form 

9, = oat + 0,-s ?q set e. [c GOS 26s (cos oat - I) + 2 co52 8, sin o&l + 00-S (..*) (3.4) 

We determine the motion of the Hess’ gyroscope using the formulas (3.2)-(3.4) as 
follows. On a unit sphere with center at the fixed point, we construct a spherical rect- 
angle by taking two parallels separated from the mean parallel B. - 2oo~c~ by the 
angle of f 20,~~ ch, sin Bo, and two meridians separated from the mean meridian go 
by the angle of f 0,-s Xl (4 + es)‘/:. Let now the unit sphere rotate about the vertical 
with a constant low angular velocity oO-* As . Then the Oz axis traces a trajectory 
(61~ 6 - 6, + Zoo-s c&, & = 9 - tpo) on the unit sphere, and this trajectory is an 
er1ipse given bY (el + c ain &\p,)Z 

(bV -q&“~ (?&a -9 00-s Chl sin 80) 

inscribed in the spherical rectangle defined above, its principal axes inclined to the eI 
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aaduhamsatthcangieB tg28~8csln6,(~+4-4clsins9,)-’ 
While desoribmg this ellipse the 01 axis of the gyroscope executes in the first appro- 

ximation a periodic motion of period T* = 2nr~O touohing at the instants r@j and 4s) 

t(l) = 00-1 (nn + E), da) +=i (2~)~~ (2n + 1) n (@j 8 = 2/e, n - 0, -& *2, . ..) 

the side meridians and paraUeIs and intersecting at the instants r@) and .t@) 

t’3’-‘/aoo-‘[(2n+1)x+28], $4) - oo-‘xn 

the mean meridiau (8, = 0) and rhe mean parallel (& = 0) . 
It follows from fotmuIa (3.4) that the self-rotation of the body differs Iittle from the 

uniform rotation Wing piaoe at a high angular velocity oo. 
The above anaQrds makes pclalble a sufficientiy detailtd investigation of the motion 

of the Hen’ gytoacope and of the dependence of this motion on its initial value and on 
the oonsuuct&ntal parameters of the gyroscope. 
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