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As we know, the solution of the equations of motion of a heavy rigid body about 2 fixed
point in the Hess' case
aVAB ZC +esVC{A~B)y=10, =20

(4, B, C are the principal momeants of inertia and ¢, ¢, ¢; are the coordinates of the
center of gravity of the body) is not reducible to quadratures; it is reduced to the solution
of the Ricatti differential equation . This complicates investigation of the corresponding
motion considerably,

A general qualitative pattern of motion of a body was first given for the Hess® case
by N, E, Zhukovskii [1] and followed in more detail by Kovalev [2, 3] who employed
the method of moving hodograph (*).

However both these geometrical interpeetations are fairly complicated, and give rise
to severe difficulties when it comes to determining the motion of a specific rigid body
under concrete initial conditions,

In the present paper we study the Hess' case of the motion of a rigid body under the
assumption that at the initial instant a high angular velocity v, about some axis, is im-
parted to the body, We obtain explicit relations connecting the Euler angles with time,
and these enable us to analyze in detail the motion of the Hess gyroscope without much
difficulty,

1, We construct the equations of motion of a rigid body in the associated rectangular
coordinate system Ozys whose Oz~axis passes through the center of gravity of the body,
while the Oy and Oz axes are chosen in such a manner (this is always possible in the
Hess case [4]) that the expression for the kinetic energy of the body becomes

2T = a2 + a (y? + 2%) — 2byz
8y = Ay (Apds) 7 @ = A%, b= A1 (dpdsy) !

Here =z, y, z are the projections of the kinetic moment of the body on the Ozyz axes,
and Ay, Agg Agg Ay are the components of the corresponding inertia tensor for which
the relation A® = 4, (4 — 44) hoilds,

We also note the following expressions for the projections w;, @y @3 of the angular
velocity : Wy = — by, Wy = ay, W3 = 4z

*) See also A, M, Kovalev's "Geometrical investigation of certain solutions of the problem
of motion of a body with a fixed point”, Candidate’s dissertation, Donetsk State Univ.,
1969,
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In the Hess® case the fourth integral is z == 0 in the Ozxyz systemwhile the equations
themselves, their first three integrals, and the projections of the angular velocity under
the condition b > 0 in the dimensionless variables

y=VTiby, :=VIjbn t=u/VTh o;=aVT/bo®

r=Mg Vet + e, i=1,2,8 (1.1
assume the form [2]
d dzn

'Ti'y,‘:" =—t%n—"7s =+ 1.2)

d 2 dy 2 dys 2
di,: =~ (a12 — y179), 311 =—ul— g un gr=un{nt+t,n) 13
it al—cen=ch Vet avs=ky P+ NP+ i=1 (1.4)
O =(~c/2)y, O*=p, =2z (1.5

Here ¢ = 2b/a; v, V5 Vs are the direction cosines of the vertical, and h and k, are
dimensionless arbitrary constants,
Using the polar coordinates p and o

yp=pcosa, z=opsina (1.6)
to rewrite the energy and surface integrals in the form
e = c (yy + h), P (v, cos a - yssin &) = k, ¢.7n
we obtain (applying (1.2) and (1. 3)) the following equations for 41 and w:
w=tgl,a 1.8)

d
c-‘-iz—iahign(’rzosinao—mcosao) Vc(h+'h)(1__-nz)_klz

dw —— .
2 == Vet F 1) +hle+1I7 0+ v?)

Here and below we shall denote any function Fqt) by F, = F (0).

We assume that at the. initial instant the axis Oz lies in the horizontal plane, the 0
axis is inclined to the vertical at an angle 6, (0 < 6o < !/,%) and that a high angular
velocity w, about this axis is imparted to the body, Then the initial conditions are

Y10 =0, 959 = sin 6, y5, = cos 6, 1.9)
Vo=0, 2= 0¢% py= 0,% a= /2
and the relations (1. 7) yield
®o** = ch, k1 = @,* cos 0, (1.10)

Passing to the new variables ¢ and 7 and introducing a small parameter p

Yy="ho, t1=8Vhile, p=#nt (.11)

we obtain
%:‘=2 Vi®©h f(o)=1+0)(p*— o) — p?cos* By (5o = 0) (1.12)
298 — o (m ) VITF o +u(t + 0% 08B0 (1 4 0) 1.13)

2, To solve the equation (1.12) we find the roots [5] 01, 6y, o3 of the cubic equation
f (o) = 0 which are

0y = p sin 8y + /gt cos*6y + p? (...), O = —p sin Oy + ppu2 cos? 6, + pd (...) (2.1)
0y = — 1 — p2cos? 6, + p3(..)

and performing the substitution
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0= 0, — (0 — 0y B

w=) 5= =—,}-r;—[1 ++ B )] (2.2)
we obtain e
mr—f-“:‘rw%‘g;)‘“ =— Vo =05 dr [W == g—i—;%- == 214 8in By - p? (...}] (2.3)
Inverting the corresponding elliptic integral we obtain
= (1 — Vo, =051 (5 = sn )
as a function periodic in t of the period 7,
Ty = 4K (0y — Op)~ 7t = 22T, [Ty = 1 — Yyp? sin? 6y + p (...)] (2.4)
where X is a complete elliptic integral of the first kind,
Introducing a new variable t* in place of <
T o= Tyr* (2.5

we find that the quantity
g = spn (9 — 2K nLt%) (2.6)

is a 2neperiodic function of t*.
Expanding & by means of the formula

snow = sin uy [4 + Yekt (1 + cos Zug] + k4 (..., uy = Yy aukK?
together with the expressions for 4? and ¢ quoted above and inserting the result into the
power serfes in u given in (2,15), we obtain

0 = u sin B, sin 21* + /,p2 (cos ? By — /g sin® 8, ~— cos 26, cos 21* —
— 1/, sin? 8o cos 4r*) 4+ pd (...) 2.7

Wwe note that ¢ (t*) is a n-periodic function of t*,
Using the relations (2, 5) and (2.7) we can rewrite (1,13) to obtain
dw
23;;::0(1 %) 4 @& [Ya ¢ (1 — w*) 8in By Sin 2t* 4- (1 4 w*) cos B] +-
e p{{f ~ v (...) — Y2 (1 4 uw) sin 200 8in 2v*] 4+ pB (...) 2.8
the right-hand side of which is a n-periodic function of t*. This equation has a unique

n -periodic solution W which can be written in the form of a series
W= w* -+ pwy <+ pwy + ...

with periodic coefficients given by

dw*
2-;;; 2= ¢ {1 - w*%) 2.9
du; (2.10y

TE%' = e cwy + F 5 (T4, 0% w1, ooy wiy) Gmi2, )

where F; is a n-periodic function of ¥,
In fact, w* = 1 is the only periodic solution of (2. 9) and each of the Eqs. (2. 10)
has also a unique periodic solution [6] by virtue of the fact that ¢ is real,
Thus, we obtain the following expression for W
2 3 sin 26 .
°°:,6° +put [‘“’;cf‘ -7 (Zin+ 4‘; (csin 2v® — 2 co8 2t9)] + w? (..) (2.44)

and writing for it a variational equation, we confirm that for sufficiently small p the
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periodic solution (2.11) is asymptotically stable, As for the required particular solution
(wo = 1) of (2. 8)(which, generally speaking, can be found using the Poincaré theorem
[8]), we find that by virtue of the fact that ,
lw—W|~pexp(—ecr®), T8 ~p Pl
it converges very rapidly to W. For this reason we shall use the solution (2. 11) instead
of the solution of (2, 8).
Formulas (1. 8) and (2,11) yield
sin @ = 1 — 1/, p%~? cos? 6,
cos o = — pc™1 cos B + 3/gp? (c? + 4)7! sin 26, (c sin 2% — 2 cos 21*)

which, on insertion into (1. 6) and using (1. 7), (1,11) and (2, 7), give

m (e ] B e 2cn e — S )

z3=Vok {1 4 Y2 sin 8o 8in 2v* + /5 p? [2 cos 26, (1 — cos 21%) + (2.12)
-+ sin® G0 8in? 2v*] 4+ pu3 (...)}
Formulas (1. 2), (1. 11), (2, 20) and (2, 25) yield
v, = sin 8, sin 21* + 1/, p [cos?0, — 1/, 8in? 6; — cos 265 cos 27* —
— 1/, gin? O, cos 41*] + p2? (..))
¥; = sin B, cos 2t* — p (7 cos? B, — 1/, cos 26, sin 27%) + p2 (...) (2.43)
Y2 = ¢o8 By 4 p cos 8, (1 — sin G, sin 27%) 4 p® ()

3. ‘We shall analyze the motions of the Hess' gyroscope using the Euler angles 6, o, ¥

d o171 4 O1Y2 do d
°°SO'=7”‘E:£=—W‘ 'd_t=“”"7\z‘1°°39 (3.4)

The first formula of (2, 14), the last one of (2. 13) as well as (1.1) and (1.11) yield
8 = 8, — 2c05h; (1 — sin 8, sin @) + 0;%...) (A = ac™IT ctg 6,) (3.2)
Inserting (1, 1), (1. 5), (2. 12) and (2. 13) into the second relation of (3,1) and integra-
ting, we obtain the following expression for the angle of precession
Y = P — W5k, (25in 0yt + ¢ c0s Ogf) + 05yt + 054 (...) {3.3)
Ay = A% sec 6, [(c? + 4) cos?0, — 2¢?]
Formulas (1. 1), (1. 5), (1. 11), (2. 12), (2. 13), (3. 1) and (3, 3) yield an expression for
the angle of self-rotation in the form
@ = wof 4 0y 2 Ay sec 0, [c cos 26p {cos @4t — 1) 4 2 cos? G, sin w4t] + 02 (...) (3.4)
We determine the motion of the Hess® gyroscope using the formulas (3. 2)—(3.4) as
follows, On a unit sphere with center at the fixed point, we construct a spherical rect-
angle by taking two parallels separated from the mean parallel 8, — 2w, %A, by the
angle of + 20,72 ¢), sin 6y, and two meridians separated from the mean meridian ¥,
by the angle of 4 w,"2A1(4 + ¢?)'”2. Let now the unit sphere rotate about the vertical
with a constant low angular velocity ws™® A; , Then the 0z axis traces a trajectory
(1= 6 — 6, 4+ 20,72 chy, ¢ = — ¢) on the unit sphere, and this trajectory is an
ellipse given b}’ (61 4+ csin Bo1)? R .
(;\-30)3 + (21’)2 =
inscribed in the spherical rectangle defined above, its principal axes inclined to the 6,

(As == @¢~2 chy 8in Bo)
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and Yy axes atthe angle B o 55 _ 8, gin 6, (¢t + 4 — 4c® sin® 6,)2

While describing this ellipse the Oz axis of the gyroscope executes in the first appro-
ximation a periodic motion of period T* = 2mwo™ touching at the instants £V and £

V) wogt (i -e), (D = (20t (2n+ 1) (tge =2/e, nm0, 44, $2,..)
the side meridians and parallels and intersecting at the instants #* and ;&

18 = Yy 0™ [(2n 4 1) % + 28], 9 - g~inn

the mean meridian (8, = 0) and the mean parallel (§, = 0) .

It follows from formula (3, 4) that the self-rotation of the body differs little from the
uniform rotation taking place at a high angular velocity ,.

The above analysis makes poesible a sufficiently detailed investigation of the motion
of the Hess' gyroscope and of the dependence of this motion on its initial valve and on
the constructional parameters of the gyroscope.
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Editorial Note. The author of this whr:gex quotes the fouow gnumb&rs of for-
mulas: (2, 14), (2. 15), (2. 20) and (z 25) do not appear obvi-
ou:lyenmuqmﬁom which will perhupbemceedbythe aummoncofthe
following issues of the journal,



